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ABSTRACT

Superconducting microwave transmission lines can be designed to have lower loss, lower
dispersion, and lower phase velocity than conventional metal lines. These properties make
superconducting transmission lines attractive for use in many devices and systems such as
filters and analog to digital converters. The problem with designing microwave circuits
which utilize these lines is that accurate circuit models do not exist. This paper present
models for the microwave transmission line parameters (phase velocity, attenuation, and
characteristic impedance) of superconducting lines as a function of temperature and
geometry. An experiment to verify these models is also presented.
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SECTION 1

INTRODUCTION

The work described in this report was performed as part of project 91080, "Superconducting
Analog-to-Digital Converters." One class of superconducting analog-to-digital converters
(SADCs) utilize Josephson junctions, transmission lines, and filters consisting of metal in a
superconducting state. In order to design SADCs, good models for superconducting microwave
transmission lines must exist. This work focuses on modeling superconducting planar
microwave transmission lines and designing experiments to verify these models.

Microwave transmission lines fabricated with superconducting material have several
advantages over conventional transmission lines. Superconductors exhibit zero resistance at DC
and the resistance increases with the square of the frequency. At microwave frequencies, the
surface resistance of superconducting niobium is still three orders of magnitude smaller than that
of copper at 4.2 K [1]. Thus, smaller microwave filters with higher Q-factors for monolithic
microwave integrated circuit (MMIC) applications can be realized by using superconducting
material. In addition to low loss, superconducting metals exhibit kinetic inductance associated
with the magnetic fields stored in the superconductor. This kinetic inductance can be utilized to
fabricate transmission lines with phase velocities as small as 1/100th of the speed of light [2].

Planar transmission lines compatible with SADC designs include Microstrip (MS), Coplanar
Waveguide (CPW), Coplanar Strips (CPS), and slotline. The superconducting transmission line
models we have developed are general and apply to any geometry of transmission line. Kinetic
inductance effects are easiest to measure in MS geometry. For this reason the experimental
portion of this study has focused primarily on MS. Kinetic inductance MS lines have extremely
low characteristic impedances and for this reason we have analyzed CPW as a high-impedance to
low-impedance transition from our 50-ohm measurement system to MS. The geometry of MS
and CPW lines are illustrated in figures I and 2.

There are no commercially available computer aided design (CAD) tools for microwave
design that accurately model the unique properties of superconductors. We have developed a
capability for modeling elementary superconducting transmission lines, including the accurate
simulation of complex conductivity as a function of temperature and frequency. In section 2 of
this paper, these models are presented. These models produce results which can be incorporated
into microwave circuit design programs such as Touchstone or Supercompact. Experiments
must be performed to confirm the validity of our models. A general technique for extracting
microwave transmission line parameters from measurements made on transmission line
resonators is presented in section 2.

We have successfully used the resonant technique from section 2 to measure the properties of
normal conducting transmission lines and the results are presented in section 3. We have
designed two independent experiments to verify the superconducting transmission line models
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Figure 2. Coplanar Waveguide (CPW) Geometry

developed in section 2. These proposed experiments are an impedance mismatch coupled
resonator and a dielectric step coupled resonator and am described in section 3. Designs for test
circuits, along with associated matching networks are presented. Section 4 presents our
recommendations for future work at MITRE in the area of superconducting microwave
transmission lines.
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SECTION 2

SUPERCONDUCTING TRANSMISSION LINES

The unique properties of superconducting materials can be exploited in microwave circuits to
provide low-loss/dispersionless transmission lines, compact delay lines, and high-Q resonators.
These applications result from fundamental differences in conductivity and field penetration
between conventional metals and superconductors. For example, the surface impedance of a
superconductor is several orders of magnitude more reactive than it is lossy. Also, field
penetration into a superconductor is less than the classical skin depth and is essentially
independent of frequency, thereby greatly reducing material dispersion in waveguides. In this
section we will first examine the surface impedance of superconductors, and then present
transmission line models which include this superconducting surface impedance.

2.1 SUPERCONDUCTING SURFACE IMPEDANCE

Superconductivity is the name given to a remarkable state transition of a material which is
characterized by the disappearance of electrical resistance and the complete expulsion of magnetic
flux. The name superconductivity was coined by Kamerlingh Onne- who, in 1911, discovered
that resistance of a mercury filament abruptly dropped to an immeasurably small value at a
temperature of approximately 4.2 kelvin (K). The diamagnetic property of superconductivity
was discovered in 1933 by Meissner and Ochsenfeld, who showed that the transition to the
superconducting state involved the expulsion of magnetic flux in a superconductor. This is in
contrast to a perfect conductor, which would be expected to trap magnetic flux lines in place.

The temperature at which the superconducting state transition occurs is known as the critical
temperature (Tc). The noun superconductor refers to a material which undergoes this state
transition. A superconductor exhibits zero DC resistivity and diamagnetism at temperatures
below the Tc, and the adjective superconducting is used to describe this condition. At
temperatures above the T,, a superconductor behaves as a normal metal. Today, approximately
half of the metallic elements are known to be superconductors at sufficiently low temperature, as
well as many compounds including the "high-T" ceramic materials.

Superconductivity was first characterized by phenomenological theories which attempted to
account for the unique diamagnetic property of superconductors. The London theory [3]
assumed that the superconductor conduction mechanism could be described by a two-fluid model
which consists of normal electrons and super (resistanceless) electrons, and that diamagnetism
could be explained by restrictions (not violations) of Maxwell's equations. The microscopic
theory of superconductivity followed in 1956 when Cooper showed that two electrons could be
coupled together into a bound state (Cooper pairs) through phonon scattering of the electrons in
the lattice [4]. The hypothesis that electron-phonon interaction was responsible for
superconductivity helps explain why good normal conductors (e.g., gold and copper, which do
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not have strong lattice vibrations) do not superconduct, while poor normal conductors are often
superconductors. Cooper's result was extended to many pairs of interacting electrons to
formulate the Bardeen-Cooper-Schrieffer microscopic theory of superconductivity (usually
referred to as the BCS theory) [5].

The key principle of the BCS theory is that the super electrons are actually paired electrons
which have condensed into a superconducting ground state, thereby resulting in a reduction of
total system energy. An important feature of the superconducting ground state is that the Cooper
pairs are all in the same quantum state, have the same energy, and are all described by the same
wave function. This is a consequence of the paired electrons obeying Bose-Einstein statistics
and; therefore, the Pauli exclusion principle (with respect to Fermions) does not apply. Thus the
Cooper pairs overlap in a superconductor, with it being energetically favorable for them to have
coherent (locked) phases over macroscopic distances (i.e., much greater than the lattice spacing.)

The condensation of electrons out of a continuum of allowed energy values into Cooper pairs
at a single energy level also gives rise to an energy gap (A) at the Fermi surface. This energy gap
is orders of magnitude less than the Fermi energy, typically about one millielectron volt,
compared to Fermi energies of several electron volts. The energy gap, A, is the average energy
per electron of a Cooper pair, relative to the continuum. The binding energy of a Cooper pair is
therefore 2A, this being the minimum energy required to break the pair. Thus the situation in a
superconductor can be thought of as analogous to a semiconductor, with both having an energy
gap at the Fermi surface. When a superconductor is at finite temperatures below the Tc, thermal
energy and incident radiation can break Cooper pairs. The electrons from the broken pairs are
known as excited quasipardcles, which behave as normal electrons with well specified momenta.
Since the binding energy between paired electrons is 2A, absorption of incident radiation is
possible for field frequencies of o > 2AAT where A is the reduced Plank's constant. This
frequency is refered to as the gap frequency of a superconductor, typically about 1 THz. In the
following paragraphs we will describe the surface impedance of superconducting materials by
first presenting the complex conductivity of superconductors according to the two-fluid model,
and then extend this result to include gap phenomena and temperature effects using the BCS
theory.

The London theory predicts that fields (including static fields) cannot penetrate a
superconductor beyond a penetration depth &L (a material parameter, typically 100 nm.) The
penetration depth of a superconductor is defined as [6]

m
Lns 2 (1)

where m is the electron mass, p. is the free space permeability, ns is the density of the paired
electrons, and e is the elementary charge. The total electron density (n) is the sum of n, and the
normal electron density n,. Assuming an electric field in a superconductor in the form Ee',
where cis angular frequency c= 2,V(vectors are denoted by bold face variables), the London
equations are given as:
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curlIJ. 2
dJ~ 1c d i s = -I -- L 

( 2 )

dt = E (3)

where Js is the current density of the paired electrons. The total current density is the sum of J,

and the normal electron current J,:

J=Ji +J,=(qi- 2)E (4)

Equation 4 shows that the superconductor current density is related to the electric field by the
complex conductivity of the superconductor. An equivalent circuit for the impedance of an
incremental section of a superconductor is depicted in figure 3.

Cr2s

e2n a

Figure 3. Superconductor Impedance Equivalent Circuit

The real and imaginary components of the complex conductivity are derived from equation 3
and a momentum relaxation equation accounting for the effect of collisions between the normal
electrons. The results are given as [71:

,, e 2 T7 =.ns 2+ ,ne2(on)2

Ml+W r)MW Ma(l+ W2 r2) (5)

where iris the momentum relaxation time. Note that the real part of the conductivity depends
only on the normal electrons. Therefore superconductors are only "lossless" at DC, and losses
will result from changing fields due to the normal electrons present. At frequencies low enough
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such that a" < I (typically less than 100 GHz), al and a can be reduced and by substitution

of equation 1 we obtain:

a = aj - O2 = a(n.1n) -jl ,) L(6)

where a. = 2,/m (7)

The normal state conductivity, a., is related to the penetration depth and the energy gap at a
temperature of absolute zero by:

A
= iA(O)A.(O) (8)

The real and imaginary components of the conductivity can be calculated using the two-fluid
model. However, the two-fluid model does not take into account energy gap effects such as
electron pair splitting due to incident radiation. It has been shown that accurate calculations of
the superconductor conductivity require the use of the Mattis-Bardeen theory [8] where
expressions of the complex conductivity were derived from the BCS theory [9]. In general the
Mattis-Bardeen theory is quite complicated, but in the extrme anomalous limit their result
reduces to integral equations which can be solved numerically. These equations are given as:

.E2+ i ~ l [ -f(E + w)E hE
h -A (9)

an h ( + Ito(1o]),&-A,, [AF - E2]V2[(E ~2 2V (10)

wherejfx) is the Fermi function,-
1

f(x) = 1 + ex aIT (II)

and E2 + A2+ d oE

d g(E) 2 )2 2  (12)
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The first integral of equation 9 represents thermally excited quasiparticles, while the second
integral accounts for photon-excited quasiparticles and is zero below the gap frequency.
Equation 10 for q2 considers the paired electrons and its lower limit is taken as -A at frequencies
above the gap frequency (Aw > 2A). In equation 12 the signs of the square roots are such that
g(E) is positive in both integrals of equation 9. The energy gap has an implied temperature
dependence which can be found by solving for the root of [10, 11]:

=(0) LT A(0) J (13)

or approximated by [12]:

A(T = (0)cos[!r(TIT)2A 2  
c(14)

The assumption of the extreme anomalous limit is typically valid for pure elemental
superconductors. The material of interest in this paper (niobium) is a London superconductor
(i.e., current density at a point may be described by a constant, local field.) However, the
Mattis-Bardeen theory provides the best available means to calculate the complex conductivity of
a superconductor [13], and this theory has been shown to exhibit good correlation with
experimental results for both niobium [14, 15] and high-T ceramic superconductors [16, 17].
Therefore, we will use the above Mattis-Bardeen equations to calculate the complex conductivity
of superconducting niobium.

A computer program, written in FORTRAN, was used to numerically integrate the Mattis-
Bardeen equations 9 through 13. A typical result showing the complex conductivity as a
function of frequency is shown in figure 2. The curves shown are for niobium at a temperature
of 4.2 K, where o1 and *2 are given relative to o. Here o" varies with frequency, which is not
predicted by the two-fluid model. The London theory does predict the correct 1/wdependence of
a2. At the gap frequency (approximately 720 GHz), note the precipitous decrease of o2 and the
corresponding rise in or,. This is a result of the incident radiation having sufficient energy to
split paired electrons.

The superconducting surface impedance Z, is calculated using Maxwell's equations with the
London equations and is given by (181

=S j61 coth[:j~ 0 j+l4

Z j0)tpoi L)(/z (15)

We can make use of Mattis-Bardeen complex conductivity by rewriting equation 6 in the form

jmp!L0 = j4 0a1 +(16)
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Figure 4. Relative Complex Conductivity Venus Frequency (note: the data shown is for
niobium at a temperature of 4.2 K, relative to the normal state conductivity a,.)

and substituting it into equation 15 to yield

Z, = 4j o acth(t4; ol-W ) (17)

where a = 0 -J a2 and t is the conductor metalization thickness. Figure 5 depicts the surface
impedance for superconducting niobium at microwave frequencies. Note that the reactive
component of the surface impedance is approximately three orders of magnitude larger than the
real part. This reactive impedance is responsible for the low-loss properties of superconducting
transmission lines.

Finally, we can verify the assertion that field penetration into a superconductor is less than
the classical skin depth. Making use of the usual expression for skin depth

8= (18)

we can calculate and compare the skin depth of normal and superconducting metals. Figure 6
depicts the result, where the superconducting skin depth is much less than the normal state skin
depth. This does not result in additional losses for the superconductor since the surface
impedance is predominantly reactive. More importantly, the superconducting skin depth is
independent of frequency, thereby greatly reducing material dispersion in waveguides.
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2.2 TRANSMISSION LINE MODELS

The physics of wave propagation on a superconducting transmission line are the same as that
for normal metal waveguides. However, it was shown in the previous section that a
superconductor has a fundamentally different surface impedance at microwave frequencies,
where Z, is orders of magnitude more reactive than it is lossy. This complex Z, is calculated
from the superconducting complex conductivity, which is also related to the field penetration (A1)
in the superconductor by equation 16 above. Furthermore, losses on a superconducting
transmission line are proportional to the square of frequency, in contrast to the conventional
surface resistance varying as the square root of frequency. It is necessary to include all of these
effects in order to accurately model superconducting transmission lines. Fortunately, this can be
conveniently accomplished through the use of the complex surface impedance Z, calculated from
the superconductor complex conductivity, in the transmission line equations from the literature.

General transmission line theory defines the propagation factor rwhich describes the
attenuation and phase response of a transmission line. The propagation factor is given by

y(f) = a(f)+ j3(f) (19)

where a and P are the attenuation and phase "constants," respectively. The use of the word
"constant" is misleading since a and fitypically vary with frequencyf. The propagation factor is
defined in terms of the transmission line's distributed series impedance (Z) and shunt admittance
(Y), which also define the characteristic impedance (Z.) of the transmission line. These
relationships are given in equations 20 and 21.

Y = -y (20)

Zo=4;jY (21)

The distributed series impedance and shunt admittance are functions of the transmission line
geometry, and are given by

Z = j2 xfpog + Z3(f)g2  (22)

Y = 2feo(jer, + e tan 8)1g, (23)

In these equations r. is the free space permittivity, r, is the relative permittivity of the dielectric,
£re is a geometry dependent effective permittivity, and tan 6is the loss tangent of the
transmission line dielectric material. The factors gj and g2 account for transmission line
geometry, allowing the above equations to be completely general.
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The analysis of planar transmission lines (e.g., MS and CPW) is difficult because they
cannot support a pure transverse electromagnetic (TEM) wave. This is a result of fringing
electric field lines experiencing an inhomogeneous dielectric, leading to discontinuities in the field
which cause contributions from longitudinal components. However, at low frequencies a
quasistatic solution can be obtained by assuming that the lowest-order mode is approximately a
TEM wave. This quasi-TEM approach is manifested in equation 23 as the effective permittivity
e,,, which is an average of the dielectric material and free space. Closed form expressions for
the effective permittivity in MS is given by [19]

(e,- 1)(rd) for Wld 2 1
r1 +12d/W 4.6/IT1d fr d (24)

Ir(Er -l() 2 (Er +O.02(-rl _ l)(t/d)
eo- (e, +) + -1 + 12d/W 4.6V(Wl for W/d < 1 (25)

In these expressions W is the MS width, t is the metalization thickness, and d is the dielectric
thickness. These are pictorially shown in figure 1. Note that these expressions have no
frequency dependence, hence the notation Pe,. With increasing frequency, longitudinal field
components become significant, causing the fields to become more concentrated in the dielectric
and; thereby, increasing the effective permittivity. This results in modal dispersion, which is
especially critical for superconducting transmission lines which have increased bandwidth by
virtue of their reduced losses [20-22]. This modal dispersion can be expressed by an empirical
formula as [23, 24]

P..._ W F-5 4ereo where
1PO 1+4 (26)

F : f eo 4d4e-7=TI0.5 +[I + 21n(l + W/d)]21
I. 1 (27)

Finally, the MS geometry dependent factors g, and g2 are given in equations 28 through 34 [25].

1 - -InSd+o0.25W-L for W/d5l
2z' [We d] (28)

91= 1+.393+ 0.667In[iWL+ I.444} for Wld >1I
I d d (29)
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We +'.25 tr1+in4XW for Wld< l
d d x dL t 2x (30)

S-'+L -L +2i for1
d d x dL tI- W >2 z (31)

92 - [ " 2 + -!Ld d [I 4XW + -Lii o
g2 Lr4dJ l We XWeL t WJJ d 2x (32)

22,dtI [ Z ~ W We t dJ ~ 2s d (33)

w
Yr I+ !L+d - In 2d_ t

{d W+0.94}{ . "' , " t

g2 _ 2d2 for
d We +!Inr2Le( + 0.941 d 9 2d 1(34)

A computer program, written in FORTRAN, was used to calculate the propagation
characteristics of superconducting microstrips to illustrate some of the properties of
superconducting transmission lines, and more importantly serve as a base line for developing an
experiment to verify these properties. Figure 7 shows the attenuation of a 10 pum MS line, a
dielectric thickness of d = 0.1 gim, and fabricated from superconducting niobium. In the figure,
the loss of the superconducting MS is compared with a normal state MS which is representative
of either copper or aluminum metalization. Note that the loss for the superconducting MS is
approximately four orders of magnitude less than that predicted for the normal state MS, albeit
the superconducting losses are increasing as the square of frequency.

Figure 8 depicts the propagation constant (normalized to the free space propagation constant
f,) of a superconducting MS as a function of the dielectric thickness. This simulation illustrates
an interesting feature of superconducting transmission lines which can be exploited to build
compact delay lines. In the figure, note that the propagation constant is inversely proportional to
the dielectric thickness, and actually becomes greater than the relative dielectric constant of the
substrate (here P = 4). This effect is due to the kinetic inductance of the paired electrons, as
manifested through the superconducting complex conductivity. An essential requirement for this
effect to be exhibited is the close physical proximity of two superconductors, in this case the MS
conductor and its ground plane.
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Figure 9 depicts the characteristic impedance -, for a superconducting MS as a function of
dielectric thickness. Three MS widths are shown. As described in the next section, the data in
figure 9 was used to choose the impedance of a MS resonator for an experimental verification of
the theories presented in this section.

a 1000

C 100

1 10 1
1

.1

Dielectric Thcknss d (in)

Figure 9. Micwsmrp Characteristic Impedance Versus Dielectric Thickness
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2.3 TRANSMISSION LINE CHARACTERIZATION TECHNIQUES

In order to verify our models, a method for measuring the complex propagation factor, y, of
a microwave transmission line is required. The complex propagation factor consists of two
parts. The imaginary part, f5 is proportional to the phase velocity on the line. The real part, a,
is the attenuation constant of the line. A resonant technique should be employed to perform these
measurements due to the increased accuracy of this technique as opposed to straight transmission
line S parameter measurements [19]. Reflection (S! ) measurements or transmission (S21)
measurements on transmission line resonators can both be performed to determine the complex
propagation constant of a transmission line.

The measurement of P requires two resonators of different lengths in order to account for the
effects of reactive discontinuities on the effective resonator length. The measurement of a
requires only one resonator. The measurement of a on the second resonator gives us increased
measurement accuracy as the two results can be averaged.

In order to perform measurements on a resonator, the resonator must be coupled to the
measurement system. This coupling must be loose so that the resonance condition is not
disturbed. The coupling to the resonator must not be so loose that the reflected or transmitted
signal from the resonator cannot be measured. As a general rule, about 20 dB of coupling is
desired, measured away from the resonant frequency. The most widely used coupling scheme
for MS and stripline resonators is to end couple through a capacitive gap. This is due to the
existence of accurate models for these gaps, and the minimal effects on resonator performance.
For CPW resonators, the most widely used coupling method is a feed line normal to the
resonator, in the center. End coupling of CPW resonators has also been demonstrated [26].

A resonance condition exists in a transmission line section when a standing wave pattern
exists which satisfies the boundary conditions at the end of the line. If the ends of the resonator
are open circuited or short circuited, and the resonator is a multiple of 1/2 wavelength long, a
resonance condition will exist. MS resonators are almost always implemented as open circuit
sections because no via holes are necessary to achieve an open circuit. With CPW, short circuit
and open circuit resonators are both easily realizable. Of the many CPW resonators described in
the literature, all except one are short circuited sections. However, research by Gopinath [27]
claims that open circuited CPW resonators have lower radiation losses.

The procedure for extracting transmission line parameters from resonance measurements is as
follows. First, two resonators of different lengths, but identical in all other ways including
coupling circuits must be fabricated. Both a and P can then be obtained from automatic network
analyzer SII or S21 measurements on these resonators.

The measurement of P involves measuring the resonant frequencies of the two resonatorsfl
andf2. For a reflection measurement, a minimum value of S1 i is obtained at the resonant
frequency. For a transmission measurement S21 reaches a maximum value at the resonant
frequency. All of the discontinuities associated with the resonator and coupling circuits can be
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represented as an effective reactance, which in turn can be modeled as a change in the line length
of the resonator which is referred to as A/d. When the effective line length is a multiple of 1/2
wavelength, a resonance occurs. The resonant frequency, line length and effective dielectric
constant are related by the equation:

=nc (35)11+ 2fl N--

where i is the physical length of the first resonator, nr is an integer, c is the speed of light in

vacuum, and ere is the effective dielectric constant of the line. Similarly for the second resonator.

12 +A4d = n2c (36)

These two equations can be solved simultaneously for ere and Aid. 13 is related to ere by the
simple relation:

.f4jori (37)

where 0 is the resonant angular frequency. The measurement assumes that there is no dispersion
(i.e., the transmission line parameters, and A are the same at both resonant frequencies). This
will not be a problem if the two different resonators lengths am fairly close to each other (within
1/10th of a wavelength at the resonant frequency) or if the resonator lengths differ by a multiple
of 1/2 wavelength at the frequency of interest giving them approximately the same resonant
frequency.

The main source of error in the attenuation measurements is radiation losses associated with
the open end discontinuities of the resonator. There are two solutions to this problem. The first
is to shield the resonator in a hollow metallic waveguide with a cutoff frequency above the
desired measurement range. This will cause the resonator radiation to couple to evanescent
modes in the waveguide which are reflected back into the resonator and are not lost. The second
method for avoiding errors due to radiation is to use existing models for the radiation at open
ends and subtract this from the measured loss. Radiation models for MS open ends and coplanar
open ends exist in the literature [28]. Although we are concentrating on MS in this paper, it is
important to note that this resonant technique can be used to analyze any type of transmission line
provided the radiation losses can be accounted for. No closed form approximations exist to
model the radiation effects in CPS, however an electromagnetic (EM) simulator could be used to
model these effects. The radiation problem is greatly reduced in stripline geometry which does
not have higher order radiation modes. The stripline technique is the most widely used to date in
the measurement of the very small attenuation constants associated with superconducting
transmission lines.

The quality factor (Q) of a resonator is defined as the product of the resonant frequency and
the energy stored in the resonator, divided by the average power loss in the resonator. For the a
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measurement the unloaded Q of each resonator must be measured. The unloaded Q is the Q
associated only with losses in the resonator. The unloaded Q of a resonator consists of three
components, Qc associated with conductor losses, Qd associated with dielectric losses, and Qr
associated with radiation losses. The total unloaded Q is related to these components by

1 - 1 (38)
Q Qc Qd Qr

The loaded Q factor includes losses associated with the external coupling circuit. Each resonator
used in the P measurement will yield an independent measure of Q near its resonant frequency.
There are two methods for doing this. Both methods will de-embed the effects of the coupling
circuit, but not any radiation effects associated with the resonator itself. The two attenuation
measurement techniques were proposed by Kajfez [29] and Ginzton [301. These methods are
described below.

The first method is proposed by Ginzton. This method can be utilized on both reflection or
transmission measurements. For a transmission measurement, the frequencies on either side of
resonance which have transmission 3 dB below the resonance level are found and labeled Fa and
Fb. The loaded Q is then given by the equation

QI = F-- (39)

where Fr is the resonant frequency. The coupling coefficient, k associated with the transmission
resonator is given by

k I21 (40)
k 2(1-1S21 maxl)

Once the coupling coefficient is determined, the unloaded Q can be obtained from

Q = Qj(l+2k) (41)

The use of Ginzton's method for reflection measurements is slightly more complicated because
the return loss at resonance is usually within 3 dB of the return loss away from resonance.
Ginzton has chosen to use Voltage Standing Wave Ratio (VSWR) measurements to find the half
power points on the resonance curve. The frequencies at the half power points on the VSWR
curve are defined as Fa and Fb. The VSWR at these points is given by the expression:

VSWRab - 2 +y2(l + z2) + "4 + y2(1 + z4) -2zy2(4 -zy2) (42)
72y( + z)
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In this procedure three new parameters, x, y, and z are defined using VSWR measurements. y
is defined as 1/(VSWR at resonance), x is given by l/(VSWR away from resonance) and z is
x/y. The unloaded Q of the resonator is given by

QffFrl(Fb-Fa). (43)

The second method for finding the unloaded Q of a resonator is a graphical procedure
proposed by Kajfez [30] which utilizes reflection measurements. This procedure relies on the
fact that the reflection response(S i) of a resonator traces approximately a circle on the Smith
Chart as the frequency is swept through resonance. this is illustrated in figure 10. The point on
the circle closest to the center of the Smith Chart is the resonant frequency and this is defined as
point 3. The diameter of the circle (D) is a function of the coupling efficiency. Points 1 and 2
and their corresponding frequenciesfl andf2 are found by picking two points on the circle some
arbitrarily small angle 0 away from resonance. These two points on the Smith Chart are located
at the positions:

F2 = (IF2!)ei& + (IF2l)ei(ry2) (44)

The loaded Q can now be found by the expression:

Qi =fj -f ano (45)

The coupling coefficient k can be found from:

k = I+ I rI D (46)

and the desired unloaded Q is given by

Q Q QX(l+k). (47)

The factor of two which is found in equation 41 and not in equation 47 was removed because this
is a reflection measurement and only one port is involved.
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Figure 10. Reflection Coefficient of a Resonator Plotted on the Smith Chart

The attenuation constant can be determined from the phase constant, A and the unloaded Q of
the resonator as

a =(48)

It is important to remember that this attenuation constant includes the effects of any radiation
from discontinuities in the resonator itself. Due to the resistance free properties of the
superconducting transmission lines, the attenuation constant will be extremely small, resulting in
very high Q resonators.
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SECTION 3

PROPOSED EXPERIMENTS

In this section we describe experiments which have designed in order to measure the
transmission line parameters of superconducting transmission lines using the resonant technique
described in section 2.3.

3.1 NORMAL CONDUCTOR RESONATOR MEASUREMENTS

In order to use the techniques described in section 2.3, we must be able to accurately measure
the resonant frequency and quality factor of a transmission line resonator. In order to determine
the accuracy of our measurement system and simulation tools, preliminary simulations and
measurements on non-superconducting MS resonators fabricated on duroid substrates were
performed. The resonators and feed circuits were modeled using both Supercompact and Sonnet
software's EM simulator. In order to minimize fabrication costs, two resonators were fabricated
on the same substrate. Reflection type resonators were chosen so that a minimum of connectors
would be required.

The circuit used in this experiment is shown in figure 11. The circuit consists of two MS
resonators with different lengths and identical feed structures. This structure was chosen because
it can be modeled using both Supercompact and Sonnet, and can be packaged in our existing test
fixture. Measurements were made using a Wiltron 360 automatic network analyzer. Results
from each of the simulations and the experiment are summarized in table 1. Note that the Sonnet
simulations are designated 'EM." The resonant frequencies predicted by Sonnet agreed very well
with the measurement. The Supercompact simulation was considerably less accurate. Neither
simulation was accurate in predicting the Q of the resonators.

Sonnet's EM simulator has an option of using corner fill to subsection the rectangles, and
they recommend using this feature whenever capacitive coupling is to be analyzed. With corner
fill, Sonnet was able to predict the resonant frequency very accurately. Supercompact does
provide a close approximation, and is much quicker to calculate data. Sonnet takes about ten
minutes per frequency point calculation, while Supercompact takes about two seconds. Neither
of the simulators was able to predict the Q of the resonator closely. This is probably due to
surface roughness and impurities in the metalization. The difference between the simulated Qs is
due to the fact that Supercompact does not model the radiation from open end discontinuities.
The difference between the Supercompact and Sonnet result provides an indication of the
magnitude of the error caused by radiation effects.

The results of this preliminary study were extremely encouraging. The measurements of
duroid MS resonators confirmed the effectiveness of our experimental technique. We have
gained confidence in Sonnet software's ability to accurately simulate resonator circuits. This will
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be important as the design of our superconducting resonator circuits are based on simulations
performed with Sonnet.

Measurements of actual superconducting resonators will be considerably more difficult to
achieve. This is due to the very low losses of superconductors which will result in large
resonator Qs. At DC, a superconductor has zero resistance, however at RF frequencies the
resistance increases as the square of the frequency. At microwave frequencies (1 - 20 GHz) the
surface resistance of superconducting niobium is about three orders of magnitude smaller than
copper. The highest reported Q for a superconducting resonator is 5x10 4 [31], although our
niobium resonators should have Q factors much lower than this due to surface roughness and
impurities. With the 100-KHz accuracy of our Wiltron network analyzer we can measure Q
factors up to 105. The HP 8510 network analyzer has an HP8341 synthesizer with 1 Hz
accuracy which will resolve a Q factor of 1010 at 10 GHz.

A potential problem which became obvious during the normal conductor measurements is the
low value of return loss, even at the resonant frequency. The copper/duroid resonators had a
return loss of about 5 dB at resonance which was very easy to resolve from other noise
associated with the system. If the reflection losses of superconducting resonators are two orders
of magnitude lower than the copper resonators, it may be impossible to detect the resonance
above the noise floor of the system. This problem could be avoided by using a transmission
measurement, optimizing the coupling, providing matching circuits, and by de-embeding inside
the test fixture through attachment of the calibration standards within the dewar. We did not test
a transmission resonator made from normal conductors because we have shown that we can
accurately simulate resonator performance and it was not necessary to fabricate another circuit.

3.2 SUPERCONDUCTING TRANSMISSION LINE GEOMETRY

As shown in section 2, the effective dielectric constant of a superconducting transmission
line can be made greater than the dielectric constant of the material used for the transmission line.
This will only occur if the kinetic inductance effects of the superconducting material are much
greater than the normal inductance effects of the transmission line. To accomplish this, a
majority of the magnetic field must be contained within the superconductor. In order to confine
the magnetic fields to the superconductor, and not the dielectric, the two conductors of any TEM
or quasi-TEM transmission line must be extremely close.

This restriction of conductor spacing limits the types of practical lines that can be fabricated
with existing photolithography. In superconducting MS, kinetic inductance does not have a
significant effect on the propagation constant unless the dielectric thickness is on the order of 0.1
lim or less. Fabrication of 0.1-pm SiO2 dielectric layers is routinely accomplished without
pinholes which would short a MS line. CPW and CPS transmission lines are not practical for
this application due to the extremely small gaps that would have to be photolithographically
defined. For this reason we have chosen to concentrate our study exclusively on MS
transmission lines.
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The use of a very thin dielectric imposes some restrictions on the measurement techniques
available for this study. According to our models, MS lines of reasonable width have very low
characteristic impedances. A 50-pm wide line with a O.lLm dielectric has a characteristic
impedance of 0.5 ohms. A 5-jm wide line has a characteristic impedance of 4 ohms. Lines
smaller than this which extend for a few mm are not practical to fabricate with existing
photolithography technology.

Coupling to thin MS lines from a 50-ohm coaxial measurement system is a challenging
engineering problem. In the duroid substrate experiment, coupling through a capacitive gap was
used. This technique is not possible with thin dielectric MS as shown in figure 12. The field
lines extend at most 1 prn away from the edge of a MS with 0. 1-pLm dielectric thickness (32]. A
gap any bigger than 1 pm will provide very little coupling. This was verified with Sonnet
software's EM simulator. In the simulation, a 100-pm wide MS line on a 0.1-jim substrate was
coupled to another line through a 1-pm gap. The coupling was less than -60 dB. The limits of
photolithography prevent us from making a gap small enough to provide any significant coupling
to a resonator.

I I II IElectrcFdLs

-"-- 1 urnm ..- "-

Substrate

Groun Plane

Figure 12. Gap Coupling in Thin Dielectric Microstrip

Any coupling scheme that is used will need to account for a large mismatch in impedance as
well as an extreme change in line geometry. At microwave frequencies, our goal will not be a
perfect match since this will be extremely difficult to achieve. Instead the goal of the coupling
scheme should be to transfer enough power to the MS line to allow us to measure the desired
quantities (resonant frequency and Q factor). In the measurement technique outlined above, both
reflection and transmission resonator methods are presented. Reflection measurements will not
be practical for kinetic inductance MS. Due to line discontinuities most of the incident power
will be reflected back to the source before it gets to the resonator. A reflection measurement will
have to discriminate a small resonance from a large reflected signal. For this reason transmission
measurements such as Ginznon's method should be employed to characterize superconducting
transmission lines.
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After abandoning the gap coupling technique, we have developed two methods for achieving
the desired coupling. The two methods are impedance mismatch coupling and dielectric step
coupling. Impedance mismatch coupling is simpler to implement, but produces reduced
accuracy. Impedance mismatch coupling is described below and the stepped dielectric coupled
resonator is described in section 3.3.

Impedance mismatch coupling utilizes the impedance mismatch between the measurement
system and the resonator as a loose coupling mechanism. This technique has been successfully
utilized by Pond [2] in a measurement of kinetic inductance MS lines. This method would
involve measurements on relatively wide (10 - 100 pLn) lines which would be coupled by a
precision coax to MS adapter such as a Wiltron beaded K connector as shown in figure 13.

recision 50 Ohm coax-microstrip 
launchers

Low impedance kinetic inductance microstrip line

Figure 13. Impedance Mismatch Coupled Resonator

The impedance mismatch technique described above will have sufficient accuracy for our
purposes. The length of the resonator is defined by the positioning of the MS launchers. The
measurement technique relies on being able to accurately define the length of the resonator.
Recall that for the phase velocity (0) measurement, two resonators of different lengths are
required. The two simultaneous equations to be solved for the effective dielectric constant are
given by 2.35 and 2.36 where Ii is the physical length of the first resonator, n, is an integer, c is
the speed of light in vacuum, and ere is the effective dielectric constant of the line. Similarly for
the second resonator 12 is the length and n2 is its resonant mode number. These two equations
can be solved simultaneously for ere and Aid. The equation for e is given by:

Er c anl -n21 2  (49)
1r-= 2(!11-12) f I f2]J

Errors occur due to inaccuracies in the measurement of 11 - 12. The accuracy of this

measurement can be greatly improved by choosing nI different from n2. If ni = 1 and n2 =2

25



(i.e., the first resonator is 1/2 wavelength long and the second resonator is a full wavelength
long) then 11 - 12 is a much larger value and the small error in resonator length due to the launcher
is not as significant. Using different resonant modes will improve the accuracy of this
measurement significantly. This will be demonstrated later in the next section.

One potential problem with the impedance mismatch technique is that the extremely thin
substrate will puncture easily when the connector is attached. If the substrate is punctured, the
transmission line could become shorted. Pond has avoided this problem by cutting out a small
hole in the ground plane in the area where the connector is to be attached. At 500 MHz this
discontinuity lowers the coupling coefficient by about I dB. It is our goal to make
measurements at frequencies as high as 10 GHz. In order to avoid undesired radiation or
reflections, the hole in the ground plane should be kept much smaller than a wavelength. At 10
GHz, a 2-mm hole will be less than 117th of a wavelength on a SiO2 substrate. This should be
small enough that any errors can be removed with the measurement techniques described above.

The final design for the impedance mismatch resonator measurement circuit will consist of
two MS lines of 100-tn width, deposited on a 0.1 pm thick substrate. The two resonator
lengths are 1.1 and 0.55 cm and should resonate at approximately 10 GHz.

3.3 DIELECTRIC STEP COUPLED RESONATOR

Due to the potential risk involved with the impedance mismatch coupled resonator, and its
limited accuracy, we have designed a second resonator coupling mechanism. This coupling
mechanism is described in section 3.3.1. If an impedance step is not used, it becomes necessary
to match a low impedance MS to a high impedance coax through a wansformer of some sort.
The transformer must have a fiat broad band frequency response near the resonant frequency we
are trying to measure. A sinusoidal or a Dolph-Chebyshev impedance taper will be suitable for
this purpose [331. Section 3.3.2 describes a method for realizing this transformer. In section
3.3.3 we present the results of simulations which were performed to insure that substrate
resonances in our circuits would not interfere with our measurements.

3.3.1 Resonator Design

In this section, the dielectric step coupled resonator is described. Many possible coupling
methods were simulated using Sonnet software. It was found that coupling through a step in
line width or through an abrupt CPW-MS transition would not produce a measurable level of
coupling. It was found that the best results were obtained by a change in dielectric thickness. If
we couple a line with a dielectric thickness of 0.2 ;im to a line with a common ground plane and
a dielectric thickness of 0.1 pm, the desired loose coupling is achieved. This overlap coupling is
shown in figure 14.
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Figure 14. Geometry of a Dielectric Step Coupled Microstrip Resonator
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A simulation of dielectric step coupling was performed using Sonnet software. Two
different width resonators were simulated. The resonator widths are 10 and 100 pm, and the
dielectric thickness and overlap thickness is 0.1 pm in both cases. The overlap length is 100 im
for both resonators. Using our models, the resonant frequency is designed to be 10 GHz.
Figure 15 shows a simulation of the frequency response of two different width, 0.57-cm long
resonators coupled to their test ports by dielectric steps. The 100-km wide resonator has a
higher Q factor but is not coupled as well as the 10-1km resonator. These simulations show that
dielectric step coupled resonators will produce the desired response. Based on these simulations
we determined that the optimum overlap thickness is equal to the dielectric thickness. The
dielectric thickness was chosen as 0.1 jim because this is the smallest thickness which can be
deposited without pinholes.

1.0

0.8 10 Im wide resonator

0.6

100 ;Lm wide resonator
C 0.4-

0.2

0.0

9.80 9.7s 10.00 10.25 10.50
Frequency (GHz)

Figure 15. Frequency Response of Dielectric Step Coupled Resonators

The coupling mechanism is not completely understood. Some of the coupling is due to the
overlap of the TEM modes in the two substrate regions. However, there is an additional
coupling mechanism between the magnetic fields propagating in the superconductors themselves.
Pond [32] has done some preliminary work to investigate this effect.

Due to the unknown nature of the coupling, the effective change in resonator length must be
assumed to be a function of frequency. As discussed before, this can be corrected by using a
full wavelength resonator and a half wavelength resonator. The resonant frequency will be
almost the same and the line length difference will be large compared to the change in effective
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line length due to the coupling. Three resonators were designed to resonate near 10 GHz using
our model for propagation constant and simulated using Sonnet software. The width of all three
were kept constant at 100 Im, and the dielectric thickness was set to 0.1 Ilm. The lengths were
0.55 cm, 0.57 cm, and 1.1 cm. The simulator predicted resonant frequencies of 10.23 GHz,
9.9 GHz, and 10.26 GHz. Using equation 3.1 with nl=n2=1, simulations on the 0.55 cm and
0.57 cm resonators compute an effective dielectric constant of 5.97. The 0.55 cm and 1.1 cm
resonators with nj=1 and n2=2 yield an effective dielectric constant of 7.11 which is much closer
to the value of 7.2 predicted by our model.

3.3.2 Impedance Matching Network

In order to measure the stepped dielectric resonator, a matching circuit is necessary. This
matching network will create an interface between the low impedance resonator and a 50-ohm
measurement system. The circuit designed is a tapered transmission line with a continuous
impedance profile. At the input and output of the transformer are the 50-ohm measurement
system and the 4.5-ohm resonator, respectively. In order to couple to the resonator, the low
impedance end of the transformer should be MS. Since the thin film networks to be fabricated
have no substrate via holes, MS will not be suitable for the high impedance end of the
transformer. Instead, the high impedance end of the line will be implemented with CPW. This
will allow an interface to 50-ohm SMA launchers. Thus, in addition to transforming from 50
ohms to a few ohms, the matching circuit must also physically change from CPW to MS.

3.3.2.1 Physical Transformation

A method to physically change from a high impedance CPW to a low impedance MS has
been demonstrated [33]. This method is compatible with the resonator circuits to be fabricated.
Figure 2 shows a cross-sectional view of CPW. Figure 1 shows a cross-sectional view of MS.
To make these two sections physically compatible, the center metal of the CPW is placed above
the dielectric layer (see figure 16, which corresponds to section B as shown in figure 14(a)). As
long as the horizontal dimensions are much larger than the vertical dimensions, the CPW models
will still accurately describe this structure. Thus, S, the top plate width, and W, the gap, must be
much larger than d, the dielectric thickness, and t, the metal thickness. The characteristic
impedance of the CPW can be varied by changing S and W.

To allow more flexibility in the impedance values of the MS, and to smoothly transition to the
CPW section of the transformer, a gap is introduced in the ground plane, as depicted in figure 17
(note that is drawing corresponds to section A of figure 14(a)). Comparing figures 16 and 17, it
is seen that the top plate, dielectric layer, and ground plane are all consistent throughout the taper.
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The transformer will have a CPW high impedance region and a MS low impedance region.
The CPW region occurs when the gap is larger than the top plate width. The MS region occurs
when the gap is smaller than the plate width. In addition, there will also be a transition region,
where the top plate and gap widths are close to the same value, where neither the CPW or MS
models are valid.

3.3.2.2 Electrical Transformation

To change the impedance of the CPW and MS, the top plate and gap widths are varied to give
a smooth impedance transformer. Four impedance profiles are considered, a linear, an
exponential, a Dolph-Chebyshev, and a sinusoidal. These are all characterized by the impedance
along the taper as a function of position. For the linear taper,

Z(x) = - - x+Z (50)
L

for the exponential taper, [34]

Z(x) = Z exp-ln (51)

for the Chebyshev taper, [33]

Z(x) = 7 exp(ln 2 [sin(r(X!- 1)) + 1]} (52)

2Zj L2

and for the sinusoidal taper,

Z(x)= cos(r) + 2 (53)
2 L 2

where L is the length of the taper, x is the position along the taper, Z, is the impedance at x=O
(the input impedance), Z2 is the impedance at x=L (the output impedance), and Z(x) is the
impedance at the point x.

Figure 18 is a plot of impedance versus position (x) along the taper for all four profiles. The
length used is 10,000 pm, Z1 is fifty ohms, and Z2 is 4.5 ohms. Note that once either the
position or impedance is specified, the other parameter is uniquely determined.
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Figure 18. Plots of Impedance Versus Position for the Four Taper Profiles.

3.3.2.3 Initial Analysis

Except at very low frequencies, the trnsmission line taper acts like a high-pass filter with a
cut-off frequency of [33J

= cv, (54)f"2L

where c is the speed of light in a vacuum and vr is the relative velocity in the transmission line.
For example, a relative phase velocity of 0.50 and a taper length of 10 mm gives a cut-off
frequency of 7.5 GHz. This length of 10 mm is suitable for use with the resonator, which is
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designed for 10 GHz and above. Furthermore, a l0-mm taper is a reasonable length for a
superconducting test circuit.

To initially compare the four profiles, a microwave CAD program (Super-Compact) was
used to simulate the tapers. This was accomplished by splitting each taper into a number of
linear tapers, an element available in the simulator. This element has an output impedance, an
input impedance, a length, and a phase velocity. If enough linear components are used, the
Chebyshev, exponential and sinusoidal transformers can be accurately modeled.

A FORTRAN program was written to automatically create Super-Compact netlists for the four
types of transformers. Inputs to this routine are the length of the transformer, the number of linear
tapers to use, the input and output impedances of the transformer, and the phase velocity. The
output from the program is a circuit file formatted for use with the microwave CAD program. The
length of each linear taper is the total length divided by the number of tapers. The input and output
impedances are calculated from the corresponding position along the transformer.

As a preliminary demonstration, a transformer circuit for each impedance profile is simulated.
The transformers analyzed are ten millimeter tapers, each split into 100 linear tapers, with an input
impedance of 50 ohms and an output impedance of 4.5 ohms. A phase velocity of fifty percent is
assumed. The circuit simulated consists of the 50- to 4.5-ohm transformer, a delay line, and a 4.5-
to-50-ohm transformer. The delay line is a 4.5-ohm, 10-mm transmission line with a phase velocity
of 0.50. This circuit is similar to a structure that will actually be fabricated to test the transformer,
i.e., a taper to transform to a resistance below ten ohms, a low impedance superconducting
transmission line, and another taper to transform back to fifty ohms. Figure 19 shows the insertion
loss of all four transformers.
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Figure 19. Responses of Four Transformers Using 0.50 Phase Velocity

Figure 19 shows that the linear taper has the greatest insertion loss in the frequency range of
interest. In the 10-GHz region, the Chebyshev, exponential and sinusoidal responses are
similar. The Chebyshev taper has the flattest passband (i.e., above 10 GHz) response. Another
important parameter is the reflection coefficient; the magnitude of S 11 should be as small as
possible. SlI is shown in figure 20. The linear taper has the worst performance; it is difficult to
distinguish among the other three transformers.
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3.3.2.4 Transmission Line Parameters

To physically realize the desired impedance profile, the top plate and gap widths am varied.
In the CPW region, the characteristic impedance of the line is given by [ 19]

30s 1Z(55)

e., is the effective dielectric constant of the line. G1 is the complete elliptic integral of the first
kind, approximated by [19]
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for_ 0 1- (56)

I k

G, n*I ' '[ 1+ ..F k 1 1(55 !5
G[ ] for *2 (57)

where

k= - and k'=4iF (58)$+2W

The quasistatic value of the effective dielectric constant of the line is given by [191:

E. =- '2-[tanhll.785 log±hw+ 1.751 +iW-r" (59)

2 [IhW h~~y&~~

and

r = (0.04- 0.7k + 0.01(1.0 - 0.1e,)(0.25 + k)) (60)

where ers is the relative dielectric constant of the substrate, h is the substrate height and W is the
spacing between the lines (see figure 16). The following dispersion correction relates e., as a
function of frequency to reo [21]:

l+aF-b  (61)

where

F and AN (62)

and [35]

b = 1.8 (63)
log(a) - u log (S/W) + v (64)
u - 0.54 - 0.64q + 0.015q2  (65)
v = 0.43 - 0.86q + 0.540q2  (66)
q = log(S/h) (67)
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S is the center line width (see figure 16).

The relative phase velocity in the line, as a percentage of the speed of light, is given by [211:

1V 1 (68)

The horizontal dimensions of the modified CPW must be an order of magnitude greater than

the vertical dimensions. Thus,

S,W 2 lOd and S,W > 10t (69)

In the MS region the line can be modeled as a parallel-plate transmission line [33]. The
characteristic impedance is given by:

d F [ 21L+d
Z. d d (70)

where d is the dielectric thickness, W is the top plate width, G is the gap width, e. is the relative
dielectric constant of the dielectric layer, and L is the London penetration depth of the
superconducting metals. This equation is valid for

W -G 2:20d (71)

The phase velocity is given by:

, - + d (72)

Equation 33 can be solved to give the effective dielectric constant in the MS region:

1
3 V2 (73)

In the CPW region, propagation occurs largely in the substrate. Thus, the equations for Zo
and er are functions of the metal widths and substrate parameters, but not a function of the
thickness or r of the dielectric layer. Conversely, propagation in the MS occurs between the
metal plates, in the dielectric layer. Here, Zo and er are functions of the metal widths and
dielectric layer parameters, but not a function of the substrate height or substrate dielectric
constant.
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For MS, since the wave is traveling in the dielectric layer, and the dielectric thickness is of
the same order as the metal thicknesses, the penetration depth of the wave into the
superconducting metals is important. Hence the London penetration term (AL) occurs in the MS
equations. For CPW however, propagation is in the substrate. Since the substrate height is
much larger than the metal thickness, penetration effects are ignored.

3.3.2.S Determining the Widths of the Top Plate and Gap

With the CPW and MS equations, the top plate and gap widths can be determined to give any
desired impedance. The top plate width must be 550 pim at the CPW input to interface to SMA
launchers. To be compatible with the resonator to be tested, at the end of the MS region, the top
plate width must be ten microns wide and the gap width must narrow down to zero. However,
in the transition region, neither the CPW nor MS models are valid. The exact characteristics of
this region are cannot be exactly determined. Therefore, the length of the transition region
should be minimized. This is done by making the CPW and MS regions as long as possible.

The length of the CPW region is maximized by minimizing the impedance at the start of the
transition. The end of the CPW region occurs when W (the spacing between top metal and
ground plane) is at its minimum value (equation 69). The CPW equations show that for a fixed
W, the characteristic impedance decreases as S (the top plate width) increases. As a result, the
top metal width is kept constant through the CPW region. Decreasing the top metal width will
increase the transition region length. The top plate width should not increase in the CPW region
since this metal must smoothly narrow down to a ten micron wide line. Large changes in metal
widths over short distances could add unmodeled and unwanted discontinuities.

In the MS region, the impedance is inversely proportional to the top metal width minus the
gap width (equation 70). The length of the MS region is maximized by maximizing the
impedance at the transition point This occurs by making W-G as small as possible. This is
limited by the validity of equation 70, shown by equation 72. Once the minimum value of W-G
for MS is given, the maximum MS impedance and therefore the position of the end of the
transition region is determined. Changing W cannot move this point. For this remason, W is also
held constant throughout the MS region. Thus, the top plate width is a constant 550 pm in the
CPW region, and a constant 10 Igm in the MS region. Note that this also has the advantage of
simplifying the layout of the top metal

Since the impedance at each point along the transformer is known, the gap width can be
determined once the top plate width has been specified. For the MS region, equation 70 can be
solved for the gap width:

W d_ 17W /2z+d
G=W-. d (74)
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For the CPW region, no simple expression exists for the gap width based on the top plate width
and the characteristic impedance. Therefore, an iterative method must be used to calculate the
gap width for this region.

In the transition region, the top plate and gap widths should smoothly change from their
values at the end of the coplanar region to their values at the beginning of the MS region. This
was accomplished by approximating these shapes as cubic polynomials. In addition to the top
plate and gap widths, the derivatives of these shapes with respect to x (the position along the
taper) at the interfaces will be kept consistent. This gives four equations in four unknowns:

A(xl)3 + B(xl) 2 + Cx1 + D = Yj (75)
3A(X) 2 + 2Bxj + C = yj' (76)
A(x2)3 + B(x2 )2 + Cx2 + D = y2 (77)
3A(x 2 )2 + 2Bx2 + C = Y2' (78)

where, using the top plate width as an example:

x, is the value of x at the end of the CPW region (the start of the transition);
x2 is the value of x at the start of the MS region (the end of the transition);
Yi is the width of the top plate at x=xl;
Yi' is the derivative of the top plate at x=xl;
Y2 is the width of the top plate at x=x2;
y2' is the derivative of the top plate at x=x2.

This system of equations is established and solved for both the top plate width and the gap
width, allowing these structures to be calculated in the transition region.

A FORTRAN program has been written to automatically generate data to draw the masks and
files to simulate the taper. This routine is completely general, that is, all of the parameters of the
metals, dielectric, substrate, and taper can be entered. The routine accepts the taper length; the
desired input and output impedance; the number of tapers to break the transformer into; the height
and relative dielectric constant of the substrate; the thickness and relative dielectric constant of the
dielectric layer, the penetration depth of the superconducting metal; the frequency (used for
dispersion correction); the desired width of the top plate in the CPW region; the desired width of
the top plate in the MS region; and the limits on the validity of the characteristic impedance
equations.

The routine assumes only that the top plate width is constant in the CPW and MS regions.
For all four impedance profiles, the routine calculates the exact locations where the CPW and MS
models are no longer valid, that is, the exact location of the transition region is found. The gap
width needed to give the necessary impedance is found for the CPW and MS regions.
Information on the top plate and gap is used to fit the cubic polynomials in the transition region.
A data file showing the width of the top plate and gap is created. This file could be used to
digitize the masks.
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3.3.2.6 Improved Analysis

The FORTRAN routine also creates Super-Compact netist files for each transformer. The
program calculates the exact phase velocity at the midpoint of each linear taper. This gives a
much moe accurate prediction of the performance than the preliminary analyses shown in section
3.3.2.3. Since the models cannot be used to predict the phase velocity in the transition region,
this parameter is also fit to a cubic.

An example is shown in tables 2 and 3 to demonstrate the use of the routine. For the MS
region, a ten micron wide top metal gives a minimum Z. of 5.14 ohms. This impedance value is
entered as the desired output impedance. This minimum value of Z occurs when the gap width
is zero. The output data is summarized in table 3-3. Note that the Chebyshev and sinusoidal
tapers have the added advantage of having the shortest transition regions, where the impedance
and relative phase velocity cannot be modeled exactly. The circuit simulated consists of the 50-to
5.14-ohm transformer, a delay line, and a 5.14- to 50-ohm transformer. The delay line is a
5.14-ohm, 10-mm transmission line with a phase velocity of 0.367. The responses of the four
tapers are shown in figures 21 and 22.

Table 2. Inputs to Taper Routine

- " length lOmm
Impedance at input 50 ohms
Impedance at output 5.14 ohms
Number of tapers 100
Substrate height 100 pm
Substrate E. 4
Dielectric thickness 0.2 pm
Dielectric e. 4
Penetration depth (niobium) 0.086 pm
Frequency 10 GHz
CPW limit W > 1od
MS limit W-G>20d
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Table 3. Summary of Output from Taper Routine

Top Metal Width Gap Width Phase Velocity
Start of Taper 550.0 jrn 622.2 Jm 0.705
Start of Transition 550.0 aim 554.0 im 0.637
End of Transition 10.0 im 6.0 gim 0.367
End ofTaper 10.0 pm, 0.0 im 0.367

____________Start of Transition End of Transition Length of Transition
Chebyshev Taper x = 3496.3 gm jx = 5623.4 gim 2127.1 jim
Exponential Taper x = 2724.8 gtm Ix = 5973.0 gim 3248.2 gim
Linear Taper x =5149.7 gm x = 8282.1 grm 3132.4 im
Sinusoidal Taper x = 5095.3 n I x = 7279.3 gm 2184.0 gm

0

0%4

CD -10 - Chebyshev

Exponential
.......... Unear

Sinusoidal

-15~

5 10

Frequency (GHz)

Figure 21. Transformer Responses Using Exact Calculation of Phase Velocity
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Figure 22. Transformer Responses Using Exact Calculation of Phase Velocity

The sinusoidal transformer is the best for this particular example since it has the flattest
passband response (figure 21), although the Chebyshev taper would also be a reasonable choice.
The plot of SII (figure 22) is inconclusive since all four tapers exhibit similar performance. The
responses have changed significantly from figure 19 due to the inclusion of the exact calculation
of the phase velocity. The mask data from the sinusoidal transformer is plotted. Figure 23
shows a plot of the top plate and gap widths along the taper. Note that both structures are
continuous and smooth.

3.3.3 Substrate Resonances

The transformer described is based on work done by McGinnis and Beyer [331. Assuming a
fixed phase velocity, they successfully designed and fabricated a 50- to 2-ohm Chebyshev
transformer. However, they observed dropouts in the response of the transformer fabricated
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which they attributed to substrate resonances. These dropouts occurred near 4.5 GHz and 8
GHz and caused almost 10 dB more loss in the circuit than predicted. We investigated this
phenomenon through research and simulations on dielectric resonators to insure that similar
problems would not affect our experiment.

350-

300
250
200

150

_ 100

5.0 Top Plate

-o Gap
-100-

-150

-200-
-250
-300-

0 2000 4000 6000 8000 10000

x (m)

Figure 23. Plot of Top Plate and Gap for the Sinusoidal Transformer

The McGinnis and Beyer circuit is fabricated on a square substrate 25 mm on a side. This is
shown in figure 24. The location of the input and output ports are shown. The height of the
substrate is 400 pm; the dielectric constant of the subsrate is 12.

The resonant frequency of a cylindrical dielectric resonator can be approximated by:[36]

f(G~) =1 (34 +117.3 (9f(GHz) =- LLm )  - j(79)
7, (L(mm) r(mm))
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where r is the radius, L is the length, e; is the dielectric constant. Instead of a cylindrical
resonator, the case here is a dielectric slab with a height 400 jum and a width 25 mm. However,
the experiment will be fabricated on a 100-pm substrate with a dielectric constant of 4. Since the
resonant frequency is inversely proportional to the square root of er. reducing this by a factor of
3 will increase the frequency by a factor of 1.7. Furthermore, if L is large, the frequency
becomes inversely proportional to r, and thus decreasing the substrate thickness by a factor of 4
will also move the resonances to a higher frequency.

6 mm

output

25 mm

6mm - input

25 mm

Figure 24. Substrate and Ports Used by McGinnis and Beyer

To show this numerically, Sonnet Software's EM simulator was used to simulate the
throughput between isolated ports on dielectric slabs. The slab (except for thickness) and ports
are constructed the same as the McGinnis circuit (see figure 3-14). Four simulations areperformed:

h = 400 pm, er = 12 (the situation in the McGinnis paper)
h = 400 gtm, er =4
h = 100 jim, e = 12
h = 100 gtm, Er =4 (the situation of the current experiment)
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Figure 25 is a plot of the predicted responses. The h = 400 Ain, 4r = 12 simulation shows
several peaks in S21 near 10 GHz. Decreasing either parameter generally reduces S21.
Decreasing both parameters effectively reduces the signal between the ports to a minimal level,
especially in the frequency range of concern (the 10 GHz region).

0
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5 -40"
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.45
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-120"

0 5 10 i5 20 25
Frequency (GHz)

Figure 25. Isolated Ports on a 25-mm by 25-mm Dielectric Slab
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EM simulations were also run on the substrate to be used for the resonator experiment. This
substrate is 30 mm by 0.5 mm. To again illustrate the effects of reducing the substrate height
and decreasing the dielectric constant, simulations are performed on a substrate with the
following parameters:

h =400 pm, Er= 12
h = 400 pm, er = 4
h= 100^ fl, e= 12
h = 100 pjm, Er = 4

Figure 26 shows S21 between isolated ports on a 30-mm by 0.5-mm substrate. The simulation
shows that for the er = 4, h = 100 ptm case, the ports are well isolated.
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Figure 26. Isolated Ports on a 30-mm by 0.5-mm Dielectric Slab
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3.3.4 Summary

The complete dielectric step coupled resonator with impedance matching transformer is
illustrated in figure 27. There are three mask layers, the ground plane (red), the center conductor
(blue) and the resonator (green). The placement of the three layers relative to each other is
illustrated. Figure 28 depicts top and cross-sectional views of this same layout (as shown in
figure 27).

JwJl

Figure 27. Complete Dielectric Step Coupled Resonator, Perspective View
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Figure 28. Complete Dielectric Step Coupled Resonator, Top and Cross-Sectional Views
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SECTION 4

CONCLUSIONS/RECOMMENDATIONS

The accepted quasistatic planar waveguide models are not at issue when simulating
superconducting transmission lines, but rather, the conventional model for conductor surface
resistance and losses. Superconducting materials exhibit a strongly inductive surface impedance
whose losses are proportional to the square of frequency, in contrast to the conventional surface
resistance varying as the square root of frequency. For accurate modeling of superconducting
transmission lines these effects must be accounted for. This can be conveniently accomplished
through the use of a complex surface impedance Zs, calculated from the superconductor complex
conductivity, in the accepted MS and CPW equations. Unfortunately, commercially available
CAD tools do not allow the conductivity or surface resistance of a material to be complex
quantities.

It is necessary that accurate computer-aided design models be included in existing MMIC
design software (for example, Touchstone, SuperCompact and SPICE) to effectively integrate
superconducting materials into the realm of MMIC design. During this investigation we have
developed models of superconducting transmission lines which can be interfaced with
commercially available MMIC design software, either by embedding the models into the
simulation software or by deriving equivalent circuit models. Equivalent circuit models could be
substituted for the superconducting MS, allowing simulation of superconducting microwave
circuits without requiring the modification of the simulation software code. Alternately, our
superconducting transmission line model could be used to calculate scattering parameter data in a
form suitable for input into the CAD simulator, treating the superconducting transmission line as
a two-port device.

An experiment for verifying the superconducting transmission line models has been
proposed. The experiment requires two resonators, 1/2 and I wavelength long. We have
decided to perform the experiments at 10 GHz which is a compromise between small size
circuits, and radiation losses. MS geometry has been chosen due to the ability to fabricate thin
dielectric substrates. We have decided to use a 0.1 jm dielectric layer for all measurements.

Two measurement circuits are proposed. The first is a 100 pm wide, 0.5-ohm resonator
coupled to its test ports by 50-ohm coaxial to MS launchers. The second circuit is a 10-pm
wide, 5-ohm MS coupled to the measurement system by a dielectric step and a 50 to 5-ohm
transition section. The transition section ends in a 50-ohm CPW section. The dielectric step
coupling has been simulated with Sonnet software's EM simulator. A mask large enough to set
up both circuits will be a reasonable size. A foundry which can generate both circuits using
niobium metalization and SiO2 dielectric should be used. These circuits will require 0.01-pm
accuracy in dielectric film thickness and 2-pm accuracy in photolithography.
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Many existing systems can be improved, and many new systems will become realizable with
the use of superconducting microwave transmission lines. We have developed models for these
transmission lines which are suitable for inclusion in commercial microwave circuit CAD
software. We have also designed experiments which will allow us to verify the accuracy of
these models.
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GLOSSARY

CAD computer-aided design
CPS coplanar strip
cPw cop~lanar waveguide

EM. elecanngtic

MMIC Monolit Microwave Integrated Circuits
MS microstrip

SADC supecndcig analog to digital converters
SMA

TEM transverse electromagnetic:
Te critical tempezature

VSWR voltage standing wave ratio
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